Microsecond-Pulsed DBD Plasma Induces Osteogenic Differentiation in Mesenchymal Cells

 <u>Natalie Shainsky</u>¹, Gary Friedman¹, Greg Fridman², Alexander Fridman³, Marla J Steinbeck², Theresa A Freeman⁴
¹Drexel University, Department of Electrical and Computer Engineering, Philadelphia, PA, USA
²Drexel University, School of Biomedical Engineering and Health Systems, Philadelphia, PA, USA
³Drexel University, Department of Mechanical Engineering and Mechanics, Philadelphia, PA, USA
⁴Thomas Jefferson University, Department of Orthopaedic Surgery, Philadelphia, PA, USA E-mail: shainskyn@gmail.com

Intracellular reactive oxygen species (ROS) is a known activator of cell signaling promoting differentiation. Our goal was to determine if Non-thermal Microsecond-Pulsed Dielectric Barrier Discharge plasma (NT-plasma) could induce cell differentiation. In this study, we applied NT-plasma to mesenchymal cells and evaluated osteogenic differentiation. First, we compared media containing ß-glycerophosphate (ß-GP), a known inducer of osteoblast differentiation, to NT-plasma treatment or H₂O₂ treatment, to evaluate redox effects. Using qPCR we measured gene expression of the osteoblast-specific differentiation genes (RUNX2, BMP2, COL I, OSTRX and ALKP). Both NT-plasma and H₂O₂ treatment resulted in only a 30% induction of β -GP's osteogenic gene expression, so a potential synergism between β -GP and NT-plasma was investigated. We cultured the mesenchymal cells for 24 hrs. in B-GP and then applied NT-plasma or Sham treatment. NT-plasma significantly enhanced both early and late osteoblast differentiation gene expression as compared to B-GP; from 2 - 20 fold depending on the gene. Taken together, these results indicate that that NT-plasma alone is not sufficient to initiate significant changes in osteogenic differentiation. However, once differentiation has been initiated, NT-plasma enhances osteogenic differentiation at both early and late time points.

This work was supported by National Institute of Health (NIH).